{ "cells": [ { "cell_type": "markdown", "id": "92f5ec54", "metadata": {}, "source": [ "## Slicing Dataframe using Loc and iLoc" ] }, { "cell_type": "code", "execution_count": 2, "id": "06e8f3f1", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 3, "id": "373789d6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " <th>City</th>\n", " <th>Work</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>10</td>\n", " <td>M</td>\n", " <td>J</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>20</td>\n", " <td>F</td>\n", " <td>K</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>30</td>\n", " <td>M</td>\n", " <td>L</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Vishal</td>\n", " <td>40</td>\n", " <td>M</td>\n", " <td>P</td>\n", " <td>True</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Age Gender City Work\n", "0 Sahil 10 M J True\n", "1 Sonia 20 F K False\n", "2 Sourav 30 M L False\n", "3 Vishal 40 M P True" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df=pd.DataFrame({\n", "'Name':['Sahil','Sonia','Sourav','Vishal'],\n", "'Age':[10,20,30,40],\n", "'Gender':['M','F','M','M'],\n", "'City':['J','K','L','P'],\n", "'Work':[True,False,False,True]\n", "}\n", ")\n", "df" ] }, { "cell_type": "markdown", "id": "7104ee40", "metadata": {}, "source": [ "### Accessing columns by Names" ] }, { "cell_type": "markdown", "id": "70042f71", "metadata": {}, "source": [ "#### Accessing single column" ] }, { "cell_type": "code", "execution_count": 4, "id": "64e8f782", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 Sahil\n", "1 Sonia\n", "2 Sourav\n", "3 Vishal\n", "Name: Name, dtype: object" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Name'] # Series" ] }, { "cell_type": "code", "execution_count": 7, "id": "d6c162de", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Sourav'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Getting the value of column\n", "df['Name'][2]" ] }, { "cell_type": "code", "execution_count": 5, "id": "434b01d1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Vishal</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name\n", "0 Sahil\n", "1 Sonia\n", "2 Sourav\n", "3 Vishal" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[['Name']] # Dataframe" ] }, { "cell_type": "code", "execution_count": 6, "id": "393a3f15", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 Sahil\n", "1 Sonia\n", "2 Sourav\n", "3 Vishal\n", "Name: Name, dtype: object" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.Name # Another way" ] }, { "cell_type": "markdown", "id": "95169d93", "metadata": {}, "source": [ "#### Accessing multiple columns" ] }, { "cell_type": "code", "execution_count": 7, "id": "c119b5b1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>10</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>20</td>\n", " <td>F</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>30</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Vishal</td>\n", " <td>40</td>\n", " <td>M</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Age Gender\n", "0 Sahil 10 M\n", "1 Sonia 20 F\n", "2 Sourav 30 M\n", "3 Vishal 40 M" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[['Name','Age','Gender']]" ] }, { "cell_type": "code", "execution_count": 8, "id": "bdaaa116", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Gender</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>F</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Vishal</td>\n", " <td>M</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Gender\n", "0 Sahil M\n", "1 Sonia F\n", "2 Sourav M\n", "3 Vishal M" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Another way\n", "list_cols=['Name','Gender']\n", "df[list_cols]" ] }, { "cell_type": "markdown", "id": "6985894a", "metadata": {}, "source": [ "#### Using loc" ] }, { "cell_type": "markdown", "id": "0bebd0fb", "metadata": {}, "source": [ "- df.loc[rows,columns] # Note:square brackets are used with loc\n", " - all rows or filtered rows\n", " - example, df.loc[df['age']>50,'name'] === df[df['age']['name']\n", " - df.loc[0,:]\n", " - df.loc[[1,2,3],:]\n", " - df.loc[[1,2,3]:['Name,'Age','Gender']" ] }, { "cell_type": "code", "execution_count": 9, "id": "b1c0e91a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Gender</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>F</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Vishal</td>\n", " <td>M</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Gender\n", "0 Sahil M\n", "1 Sonia F\n", "2 Sourav M\n", "3 Vishal M" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[:,['Name','Gender']]" ] }, { "cell_type": "markdown", "id": "2d34dc84", "metadata": {}, "source": [ "### Accessing range of columns " ] }, { "cell_type": "markdown", "id": "0ec0e77d", "metadata": {}, "source": [ "#### By index" ] }, { "cell_type": "code", "execution_count": 10, "id": "cc90d86c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Age</th>\n", " <th>Work</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>10</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>20</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>30</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>40</td>\n", " <td>True</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Age Work\n", "0 10 True\n", "1 20 False\n", "2 30 False\n", "3 40 True" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[:,[1,4]]" ] }, { "cell_type": "markdown", "id": "32f510da", "metadata": {}, "source": [ "#### By Name" ] }, { "cell_type": "code", "execution_count": 11, "id": "4a1e73f1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Gender</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>F</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Vishal</td>\n", " <td>M</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Gender\n", "0 Sahil M\n", "1 Sonia F\n", "2 Sourav M\n", "3 Vishal M" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[:,['Name','Gender']]" ] }, { "cell_type": "code", "execution_count": 12, "id": "3235c5ae", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " <th>City</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>10</td>\n", " <td>M</td>\n", " <td>J</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>20</td>\n", " <td>F</td>\n", " <td>K</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>30</td>\n", " <td>M</td>\n", " <td>L</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>40</td>\n", " <td>M</td>\n", " <td>P</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Age Gender City\n", "0 10 M J\n", "1 20 F K\n", "2 30 M L\n", "3 40 M P" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[:,1:4]" ] }, { "cell_type": "code", "execution_count": 13, "id": "46d317a4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>10</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>20</td>\n", " <td>F</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>30</td>\n", " <td>M</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Vishal</td>\n", " <td>40</td>\n", " <td>M</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Age Gender\n", "0 Sahil 10 M\n", "1 Sonia 20 F\n", "2 Sourav 30 M\n", "3 Vishal 40 M" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[:,'Name':'Gender']" ] }, { "cell_type": "markdown", "id": "91b7dda0", "metadata": {}, "source": [ "#### Give all columns of 0th row" ] }, { "cell_type": "code", "execution_count": 14, "id": "2bd5bb4d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Name Sahil\n", "Age 10\n", "Gender M\n", "City J\n", "Work True\n", "Name: 0, dtype: object" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[0,:]" ] }, { "cell_type": "markdown", "id": "6ba2e810", "metadata": {}, "source": [ "#### Give all columns of first 3 rows" ] }, { "cell_type": "code", "execution_count": 15, "id": "8419346f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " <th>City</th>\n", " <th>Work</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>10</td>\n", " <td>M</td>\n", " <td>J</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>20</td>\n", " <td>F</td>\n", " <td>K</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>30</td>\n", " <td>M</td>\n", " <td>L</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Age Gender City Work\n", "0 Sahil 10 M J True\n", "1 Sonia 20 F K False\n", "2 Sourav 30 M L False" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[[0,1,2],:]" ] }, { "cell_type": "markdown", "id": "a627dec4", "metadata": {}, "source": [ "### Notes" ] }, { "cell_type": "markdown", "id": "614a8d06", "metadata": {}, "source": [ "- loc is used to access through names\n", "- iloc is used to access through indexes\n", "- , in used to select given columns\n", "- : is used to select range of columns\n", "- if you want particular columns during fetching dataframe,use columns=list of columns you want to select" ] }, { "cell_type": "markdown", "id": "9ac36dc2", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "4cd4e921", "metadata": {}, "source": [ "### Summary" ] }, { "cell_type": "code", "execution_count": 24, "id": "c2ed5656", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Name Sahil\n", "Age 10\n", "Gender M\n", "City J\n", "Work True\n", "Name: 0, dtype: object" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get first row \n", "df.loc[0]" ] }, { "cell_type": "code", "execution_count": 17, "id": "8316bc32", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " <th>City</th>\n", " <th>Work</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>10</td>\n", " <td>M</td>\n", " <td>J</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>20</td>\n", " <td>F</td>\n", " <td>K</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Age Gender City Work\n", "0 Sahil 10 M J True\n", "1 Sonia 20 F K False" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get first two rows \n", "df.loc[0:1] " ] }, { "cell_type": "code", "execution_count": 18, "id": "4bddbb5a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 Sahil\n", "1 Sonia\n", "Name: Name, dtype: object" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get first two rows's specific column\n", "df.loc[0:1].Name" ] }, { "cell_type": "code", "execution_count": 19, "id": "2ae7d541", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " <th>City</th>\n", " <th>Work</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>10</td>\n", " <td>M</td>\n", " <td>J</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>30</td>\n", " <td>M</td>\n", " <td>L</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Age Gender City Work\n", "0 Sahil 10 M J True\n", "2 Sourav 30 M L False" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get even numbered rows\n", "df.loc[df.index%2==0]" ] }, { "cell_type": "code", "execution_count": 20, "id": "05df2443", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " <th>City</th>\n", " <th>Work</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>20</td>\n", " <td>F</td>\n", " <td>K</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Vishal</td>\n", " <td>40</td>\n", " <td>M</td>\n", " <td>P</td>\n", " <td>True</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Age Gender City Work\n", "1 Sonia 20 F K False\n", "3 Vishal 40 M P True" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get odd numbered rows\n", "df.loc[df.index%2!=0]" ] }, { "cell_type": "code", "execution_count": 22, "id": "02aa92d5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " <th>City</th>\n", " <th>Work</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Sahil</td>\n", " <td>10</td>\n", " <td>M</td>\n", " <td>J</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>30</td>\n", " <td>M</td>\n", " <td>L</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Age Gender City Work\n", "0 Sahil 10 M J True\n", "2 Sourav 30 M L False" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Add steps in rows\n", "# Select every nth row\n", "# df[df.index % n == 0] # Selects every nth raw starting from 0\n", "df[df.index % 2 == 0]" ] }, { "cell_type": "code", "execution_count": 23, "id": "567eafb0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Age</th>\n", " <th>Gender</th>\n", " <th>City</th>\n", " <th>Work</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>Sonia</td>\n", " <td>20</td>\n", " <td>F</td>\n", " <td>K</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Sourav</td>\n", " <td>30</td>\n", " <td>M</td>\n", " <td>L</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Age Gender City Work\n", "1 Sonia 20 F K False\n", "2 Sourav 30 M L False" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Excludes every nth row\n", "df[df.index % 3 != 0]" ] }, { "cell_type": "code", "execution_count": null, "id": "172d2f0e", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }